Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 5 г. Гурьевска» Кемеровской области

РАССМОТРЕНО И СОГЛАСОВАНО на заседании МО Протокол № 1 от «31» августа 2023 г.

ПРИНЯТО НА ПЕДАГОГИЧЕСКОМ СОВЕТЕПротокол № 1
от «30» августа 2023 г.

УТВЕРЖДАЮ директор МБОУ «СОШ № 5 г.Гурьевска» _____ Г.Н. Егорова «31» августа 2023 г.

РАБОЧАЯ ПРОГРАММА по информатике и ИКТ для 10-11 класса (базовый уровень)

Составитель: Медарова Н. В. учитель информатики В соответствии с учебным планом школы на учебный год для изучения пропедевтического курса информатики и ИКТ в 10 - 11-х классах выделено 1 ч/нед., что составляет 34 учебных часа в год.

Планируемые результаты освоения учебного предмета

ФГОС устанавливает требования к следующим результатам освоения обучающимися основной образовательной программы среднего общего образования:

- 1. личностным результатам;
- 2. метапредметным результатам;
- 3. предметным результатам.

Личностные результаты

При изучении курса «Информатика» в соответствии с требованиями ФГОС формируются следующие личностные результаты.

1. Сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики. Каждая учебная дисциплина формирует определенную составляющую научного мировоззрения.

Информатика формирует представления учащихся о науках, развивающих информационную картину мира, вводит их в область информационной деятельности людей. Ученики узнают о месте, которое занимает информатика в современной системе наук, об информационной картине мира, ее связи с другими научными областями. Ученики получают представление о современном уровне и перспективах развития ИКТ-отрасли, в реализации которых в будущем они, возможно, смогут принять участие.

2. Сформированность навыков сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно- исследовательской, проектной и других видах деятельности.

Эффективным методом формирования данных качеств является учебнопроектная деятельность. Работа над проектом требует взаимодействия между учениками — исполнителями проекта, а также между учениками и учителем, формулирующим задание для проектирования, контролирующим ход его выполнения и принимающим результаты работы. В завершение работы предусматривается процедура защиты проекта перед коллективом класса, которая также требует наличия коммуникативных навыков у детей.

3. Бережное, ответственное и компетентное отношение к физическому и психологическому здоровью как к собственному, так и других людей, умение оказывать первую помощь.

Работа за компьютером (и не только над учебными заданиями) занимает у современных детей все больше времени, поэтому для сохранения здоровья очень важно знакомить учеников с правилами безопасной работы за компьютером, с компьютерной эргономикой.

4. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; осознанный выбор будущей профессии и

возможностей реализации собственных жизненных планов.

Данное качество формируется В процессе развития навыков самостоятельной учебной и учебно-исследовательской работы учеников. требует проектных заданий OT ученика проявления самостоятельности в изучении нового материала, в поиске информации в различных источниках. Такая деятельность раскрывает перед учениками возможные перспективы в изучении предмета и в дальнейшей профориентации в этом направлении. Во многих разделах учебников рассказывается об использовании информатики и ИКТ в различных профессиональных областях и перспективах их развития.

Метапредметные результаты

При изучении курса «Информатика» в соответствии с требованиями ФГОС формируются следующие метапредметные результаты.

1. Умение самостоятельно определять цели и составлять планы; самостоятельно осуществлять, контролировать и корректировать учебную и внеучебную (включая внешкольную) деятельность; использовать все возможные ресурсы для достижения целей; выбирать успешные стратегии в различных ситуациях.

Данная компетенция формируется при изучении информатики в нескольких аспектах:

- учебно-проектная деятельность: планирование целей и процесса выполнения проекта и самоконтроль за результатами работы;
- изучение основ системологии: способствует формированию системного подхода к анализу объекта деятельности; алгоритмическая линия курса:
- алгоритм можно назвать планом достижения цели исходя из ограниченных ресурсов (исходных данных) и ограниченных возможностей исполнителя (системы команд исполнителя).
- 2. Умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции другого, эффективно разрешать конфликты.

Формированию данной компетенции способствуют следующие аспекты методической системы курса:

- формулировка многих вопросов и заданий к теоретическим разделам курса стимулирует к дискуссионной форме обсуждения и принятия согласованных решений;
- ряд проектных заданий предусматривает коллективное выполнение, требующее от учеников умения взаимодействовать;
 - защита работы предполагает коллективное обсуждение ее результатов.
- 3. Готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников.

Информационные технологии являются одной из самых динамичных предметных областей. Поэтому успешная учебная и производственная

деятельность в этой области невозможна без способностей к самообучению, к активной познавательной деятельности. Интернет является важнейшим современным источником информации, ресурсы которого постоянно расширяются. В процессе изучения информатики ученики осваивают эффективные методы получения информации через Интернет, ее отбора и систематизации.

4. Владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Формированию этой компетенции способствует методика индивидуального дифференцированного подхода при распределении практических заданий, которые разделены на три уровня сложности: репродуктивный, продуктивный и творческий. Такое разделение станет для некоторых учеников стимулирующим фактором к переоценке и повышению уровня своих знаний и умений. Дифференциация происходит и при распределении между учениками проектных заданий.

Предметные результаты

При изучении курса «Информатика» в соответствии с требованиями ФГОС формируются следующие предметные результаты, которые ориентированы на обеспечение, преимущественно, общеобразовательной и общекультурной подготовки.

- 1. При изучении курса «Информатика» в соответствии с требованиями ФГОС формируются следующие предметные результаты, которые ориентированы на обеспечение, преимущественно, общеобразовательной и общекультурной подготовки.
- 2 Владение навыками алгоритмического мышления и понимание необходимости формального описания алгоритмов
- 3. Владение умением понимать программы, написанные на выбранном для изучения универсальном алгоритмическом языке высокого уровня. Владение знанием основных конструкций программирования. Владение умением анализировать алгоритмы с использованием таблиц.
- 4. Владение стандартными приемами написания на алгоритмическом языке программы для решения стандартной задачи с использованием основных конструкций программирования и отладки таких программ. Использование готовых прикладных компьютерных программ по выбранной специализации.
- 5. Сформированность представлений о компьютерно-математических моделях и необходимости анализа соответствия модели и моделируемого объекта (процесса). Сформированность представлений о способах хранения и простейшей обработке данных. Сформированность понятия о базах данных и средствах доступа к ним, умений работать с ними.
 - 6. Владение компьютерными средствами представления и анализа данных
- 7. Сформированность базовых навыков и умений по соблюдению требований техники безопасности, гигиены и ресурсосбережения при работе со

средствами информатизации. Сформированность понимания основ правовых аспектов использования компьютерных программ и работы в Интернете.

Общие цели и задачи обучения

Изучение информатики и информационных технологий в основной школе направлено на достижение следующих целей:

- освоение знаний, составляющих основу научных представлений об информации, информационных процессах, системах, технологиях и моделях;
- овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационных технологий (ИКТ), организовывать собственную информационную деятельность и планировать ее результаты;
- развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;
- воспитание ответственного отношения к информации с учетом правовых и этических аспектов ее распространения; избирательного отношения к полученной информации;
- выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, дальнейшем освоении профессий, востребованных на рынке труда.

Задачи:

- формирование информационной и алгоритмической культуры;
 формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Выпускник на базовом уровне научится:

- ▶ кодировать и декодировать тексты по заданной кодовой таблице; строить неравномерные коды, допускающие однозначное декодирование сообщений, используя условие Фано; понимать задачи построения кода, обеспечивающего по возможности меньшую среднюю длину сообщения при известной частоте символов, и кода, допускающего диагностику ошибок;
- строить логические выражения с помощью операций дизъюнкции, конъюнкции, отрицания, импликации, эквиваленции; выполнять эквивалентные преобразования этих выражений, используя законы алгебры логики (в частности, свойства дизъюнкции, конъюнкции, правила де Моргана, связь импликации с дизъюнкцией);
- строить таблицу истинности заданного логического выражения; строить логическое выражение в дизъюнктивной нормальной форме по заданной таблице истинности; определять истинность высказывания, составленного из элементарных высказываний с помощью логических операций, если известна истинность входящих в него элементарных высказываний; исследовать область истинности высказывания, содержащего переменные; решать логические уравнения;
- строить дерево игры по заданному алгоритму; строить и обосновывать выигрышную стратегию игры;
- записывать натуральные числа в системе счисления с данным основанием; использовать при решении задач свойства позиционной записи числа, в частности признак делимости числа на основание системы счисления;
- эаписывать действительные числа в экспоненциальной форме; применять знания о представлении чисел в памяти компьютера;
- описывать графы с помощью матриц смежности с указанием длин ребер (весовых матриц); решать алгоритмические задачи, связанные с анализом графов, в частности задачу построения оптимального пути между вершинами ориентированного ациклического графа и определения количества различных путей между вершинами;
- формализовать понятие «алгоритм» с помощью одной из универсальных моделей вычислений (машина Тьюринга, машина Поста и др.); понимать содержание тезиса Черча—Тьюринга;
- понимать и использовать основные понятия, связанные со сложностью вычислений (время работы и размер используемой памяти при заданных исходных данных; асимптотическая сложность алгоритма в зависимости от размера исходных данных); определять сложность изучаемых в курсе

базовых алгоритмов;

- анализировать предложенный алгоритм, например, определять, какие результаты возможны при заданном множестве исходных значений и при каких исходных значениях возможно получение указанных результатов;
- ▶ создавать, анализировать и реализовывать в виде программ базовые алгоритмы, связанные с анализом элементарных функций (в том числе приближенных вычислений), записью чисел в позиционной системе счисления, делимостью целых чисел; линейной обработкой последовательностей и массивов чисел (в том числе алгоритмы сортировки), анализом строк, а также рекурсивные алгоритмы;
- ▶ применять метод сохранения промежуточных результатов (метод динамического программирования) для создания полиномиальных (не переборных) алгоритмов решения различных задач; примеры: поиск минимального пути в ориентированном ациклическом графе, подсчет количества путей;
- создавать собственные алгоритмы для решения прикладных задач на основе изученных алгоритмов и методов;
- ▶ применять при решении задач структуры данных: списки, словари, деревья, очереди; применять при составлении алгоритмов базовые операции со структурами данных; использовать основные понятия, конструкции и структуры данных последовательного программирования, а также правила записи этих конструкций и структур в выбранном для изучения языке программирования;
- использовать в программах данные различных типов; применять стандартные и собственные подпрограммы для обработки символьных строк; выполнять обработку данных, хранящихся в виде массивов различной размерности; выбирать тип цикла в зависимости от решаемой подзадачи; составлять циклы с использованием заранее определенного инварианта цикла; выполнять базовые операции с текстовыми и двоичными файлами; выделять подзадачи, решение которых необходимо для решения поставленной задачи в полном объеме; реализовывать решения подзадач в виде подпрограмм, связывать подпрограммы в единую программу; использовать модульный принцип построения программ; использовать библиотеки стандартных подпрограмм;
- применять алгоритмы поиска и сортировки при решении типовых задач;
- ▶ выполнять объектно-ориентированный анализ задачи: выделять объекты, описывать на формальном языке их свойства и методы; реализовывать объектно- ориентированный подход для решения задач средней сложности на выбранном языке программирования;

- ▶ выполнять отладку и тестирование программ в выбранной среде программирования; использовать при разработке программ стандартные библиотеки языка программирования и внешние библиотеки программ; создавать многокомпонентные программные продукты в среде программирования;
- инсталлировать и деинсталлировать программные средства, необходимые для решения учебных задач по выбранной специализации;
- пользоваться навыками формализации задачи; создавать описания программ, инструкции по их использованию и отчеты по выполненным проектным работам;
- ▶ разрабатывать и использовать компьютерно-математические модели; анализировать соответствие модели реальному объекту или процессу; проводить эксперименты и статистическую обработку данных с помощью компьютера; интерпретировать результаты, получаемые в ходе моделирования реальных процессов; оценивать числовые параметры моделируемых объектов и процессов;
- понимать основные принципы устройства и функционирования современных стационарных и мобильных компьютеров; выбирать конфигурацию компьютера в соответствии с решаемыми задачами;
- понимать назначение, а также основные принципы устройства и работы современных операционных систем; знать виды и назначение системного программного обеспечения;
- ▶ владеть принципами организации иерархических файловых систем и именования файлов; использовать шаблоны для описания группы файлов;
- ▶ использовать на практике общие правила проведения исследовательского проекта (постановка задачи, выбор методов исследования, подготовка исходных данных, проведение исследования, формулировка выводов, подготовка отчета); планировать и выполнять небольшие исследовательские проекты;
- ▶ использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов; построение графиков и диаграмм;
- владеть основными сведениями о табличных (реляционных) базах данных, их структуре, средствах создания и работы, в том числе выполнять
- отбор строк таблицы, удовлетворяющих определенному условию; описывать базы данных и средства доступа к ним; наполнять разработанную базу данных;

- использовать компьютерные сети для обмена данными при решении прикладных задач;
- организовывать на базовом уровне сетевое взаимодействие (настраивать работу протоколов сети TCP/IP и определять маску сети);
- понимать структуру доменных имен; принципы IP-адресации узлов сети;
- представлять общие принципы разработки и функционирования интернет приложений (сайты, блоги и др.);
- применять на практике принципы обеспечения информационной безопасности, способы и средства обеспечения надежного функционирования средств ИКТ; соблюдать при работе в сети нормы информационной этики и права (в том числе авторские права);
- ▶ проектировать собственное автоматизированное место; следовать основам безопасной и экономичной работы с компьютерами и мобильными устройствами; соблюдать санитарно-гигиенические требования при работе за персональным компьютером в соответствии с нормами действующих СанПиН.

Выпускник на базовом уровне получит возможность научиться:

- применять коды, исправляющие ошибки, возникшие при передаче информации; определять пропускную способность и помехозащищенность канала связи, искажение информации при передаче по каналам связи, а также использовать алгоритмы сжатия данных (алгоритм LZW и др.);
- использовать графы, деревья, списки при описании объектов и процессов окружающего мира; использовать префиксные деревья и другие виды деревьев при решении алгоритмических задач, в том числе при анализе кодов;
- использовать знания о методе «разделяй и властвуй»;
- приводить примеры различных алгоритмов решения одной задачи, которые имеют различную сложность; использовать понятие переборного алгоритма;
- использовать понятие универсального алгоритма и приводить примеры алгоритмически неразрешимых проблем;
- использовать второй язык программирования; сравнивать преимущества и недостатки двух языков программирования;
- создавать программы для учебных или проектных задач средней сложности;
- использовать информационно-коммуникационные технологии при моделировании и анализе процессов и явлений в соответствии с выбранным

профилем;

- осознанно подходить к выбору ИКТ-средств и программного обеспечения для решения задач, возникающих в ходе учебы и вне ее, для своих учебных и иных целей;
- проводить (в несложных случаях) верификацию (проверку надежности и согласованности) исходных данных и валидацию (проверку достоверности) результатов натурных и компьютерных экспериментов;
- ▶ использовать пакеты программ и сервисы обработки и представления данных, в том числе – статистической обработки;
- использовать методы машинного обучения при анализе данных; использовать представление о проблеме хранения и обработки больших данных;
- создавать многотабличные базы данных; работе с базами данных и справочными системами с помощью веб-интерфейса.

Содержание учебного предмета

Основные содержательные линии общеобразовательного курса базового уровня для старшей школы расширяют и углубляют содержательные линии курса информатики основной школы.

Основной целью изучения учебного курса, как по минимальному, так и по расширенному учебному плану остается выполнение требований Федерального государственного образовательного стандарта. В то же время, работая в режиме 1 урок в неделю, учитель может обеспечить лишь репродуктивный уровень усвоения материала всеми учащимися. Достижение же продуктивного, а тем более творческого уровня усвоения курса является весьма проблематичным из-за недостатка учебного времени — основного ресурса учебного процесса. Учебник и практикум в совокупности обеспечивают выполнение всех требований образовательного стандарта к предметным, личностным и метапредметным результатам обучения.

Курс информатики в 10–11 классах рассчитан на продолжение изучения информатики после освоения предмета в 7–9 классах. Систематизирующей основой содержания предмета «Информатика», изучаемого на разных ступенях школьного образования, является единая содержательная структура образовательной области, которая включает в себя следующие разделы:

- 1. теоретические основы информатики;
- 2. средства информатизации (технические и программные);
- 3. информационные технологии;

- 4. социальная информатика.
- 1. Информация и информационные процессы 16 часов (определение информации, измерение информации, универсальность дискретного представления информации; процессы хранения, передачи и обработки информации в информационных системах; информационные основы процессов управления. Технологии работы с текстовой и графической информацией; технологии хранения, поиска и сортировки данных; технологии обработки числовой информации с помощью электронных таблиц; мультимедийные технологии).
- 2. **Информационное моделирование 12 часов** (моделирование как метод познания; информационное моделирование: основные типы информационных моделей; исследование на компьютере информационных моделей из различных предметных областей).
- 3. **Программирование 18 часов** (понятие и свойства алгоритма, основы теории алгоритмов, способы описания алгоритмов, языки программирования высокого уровня, решение задач обработки данных средствами программирования).

Информационные системы и базы данных – 10 часов (понятие:

- базы данных,
- системы управления базами данных СУБД,
- основные понятия реляционных БД: запись, поле, тип поля, главный ключ
- определение и назначение СУБД
- основы организации многотабличной БД
- что такое схема БД
- что такое целостность данных
- этапы создания многотабличной БД с помощью реляционной СУБД)
- **4. Интернет 10 часов** (информационные ресурсы глобальных сетей, организация и информационные услуги Интернета, основы сайтостроения).
- **5.** Социальная информатика 2 часа (информационные ресурсы общества, информационная культура, информационное право, информационная безопасность). Центральными понятиями, вокруг которых выстраивается методическая система курса, являются «информационные процессы», «информационные системы», «информационные модели», «информационные технологии».

Согласно ФГОС, учебные предметы, изучаемые в 10-11 классах на базовом уровне, имеют общеобразовательную направленность. Следовательно, изучение информатики на базовом уровне в старших классах продолжает общеобразовательную линию курса информатики в основной школе. Опираясь на достигнутые в основной школе знания и умения, курс информатики для 10-11 классов развивает их по всем отмеченным выше четырем разделам образовательной области. Повышению научного уровня содержания курса высокий способствует более уровень развития грамотности И старшеклассников по сравнению с учениками основной школы. Это позволяет, например, рассматривать некоторые философские вопросы информатики, шире использовать математический аппарат в темах, относящихся к теоретическим информатики, информационному моделированию. основам К содержательную линию «Информационное моделирование» (входит в раздел теоретических основ информатики) в значительной степени проявляется метапредметная роль информатики. Здесь решаемые задачи относятся к различным предметным областям, а информатика предоставляет для их решения свою методологию и инструменты. Повышенному (по сравнению с школой) уровню изучения вопросов информационного моделирования способствуют новые знания, полученные старшеклассниками в изучении других дисциплин, в частности в математике. В разделах, относящихся к информационным технологиям, ученики приобретают новые знания о возможностях ИКТ и навыки работы с ними, что приближает их к уровню применения ИКТ в профессиональных областях. В частности, большое внимание в курсе уделяется развитию знаний и умений в разработке баз данных. В дополнение к курсу основной школы, изучаются методы проектирования и разработки многотабличных БД и приложений к ним. Рассматриваемые задачи представление дают 0 создании производственных информационных систем. В разделе, посвященном Интернету, ученики получают новые знания о техническом и программном обеспечении глобальных компьютерных сетей, о функционирующих на их базе информационных службах и сервисах. В этом же разделе ученики знакомятся с основами построения сайтов, осваивают работу с одним из высокоуровневых средств для разработки сайтов (конструктор сайтов). Значительное место в содержании курса занимает линия алгоритмизации и программирования. Она также является продолжением изучения этих вопросов в курсе основной школы. Новым элементом является знакомство с основами теории алгоритмов. У учеников углубляется знание языков программирования (в учебнике рассматривается язык Паскаль), развиваются умения и навыки решения на ПК типовых задач обработки информации путем программирования. В разделе социальной информатики на более глубоком уровне, чем в основной школе, раскрываются проблемы информатизации общества, информационного права, информационной безопасности.

Личностные, метапредметные и предметные результаты освоения информатики

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества; понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации; ответственное отношение к информации с учетом правовых и этических аспектов ее распространения; развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества; готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в реальных жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.
- владение умениями организации собственной учебной деятельности, включающими: целеполагание как постановку учебной задачи на основе соотнесения того, что уже известно, и того, что требуется установить; планирование определение последовательности промежуточных целей с учетом конечного результата, разбиение задачи на подзадачи,
- разработка последовательности и структуры действий, необходимых для достижения цели при помощи фиксированного набора средств; прогнозирование предвосхищение результата; контроль интерпретация полученного результата, его соотнесение с имеющимися данными с целью установления соответствия или несоответствия (обнаружения ошибки); коррекция внесение необходимых дополнений и корректив в план действий в случае обнаружения ошибки; оценка осознание учащимся того, насколько качественно им решена учебно-познавательная задача;
 - опыт принятия решений и управления объектами (исполнителями) с

помощью составленных для них алгоритмов (программ);

- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно- графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства.

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебнопроектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах владение научной терминологией, ключевыми методами И приемами. Основными предметными результатами, формируемыми при изучении информатики в основной школе, являются:

- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
 - формирование навыков и умений безопасного и целесообразного

поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.

10 класс

Тема (раздел учебника)	Всего часов	Теория	Практика	
1. Введение. Структура информатики	1	1		
Информация	11			
2.Информация. Представление информации	3	2	1	
3. Измерение информации	3	2	1	
4. Представление чисел в компьютере	2	1	1	
5. Представление текста, изображения и звука в компьютере	3	1,5	1,5	
Информационные процессы	5			
6. Хранение и передача информации	1	1		
7. Обработка информации и алгоритмы	1	Самостоя- тельно	1	
9. Информационные процессы в компьютере	1	1		
Проект для самостоятельного	Работа 2.3. Выбор конфигурации компьютера			
выполнения			-	
Проект для самостоятельного выполнения	Работа 2.4. Настройка BIOS			
Программирование	18			
10. Алгоритмы, структура алгоритмов, структурное программирование	1	1		
11. Программирование линейных алгоритмов	2	1	1	
12. Логические величины и выражения, программирование ветвлений	3	1	2	
13. Программирование циклов	3	1	2	
14. Подпрограммы	2	1	1	
15. Работа с массивами	4	2	2	
16. Работа с символьной информацией	3	1	1	
Bcero:	34 ч	18,5	15,5	

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.

11 класс

Тема (раздел учебника)	Всего часов	Теория	Практика
Информационные системы и базы	10		
данных			
1. Системный анализ	3	1	2
	7	3	4 (Работа 1.3,
2. Базы данных			1.4, 1.6, 1.7,
			1.8)
Проект для самостоятельного	Работа 1.2. Проектирование задания по		
выполнения	системологии		
Проект для самостоятельного	Работа 1.5. Проектирование задания на		
выполнения	самостоятельную разработку базы данных		
Интернет	10		
3. Организация и услуги интернета	5	2	3 (Работа 2.1-
3. Организация и услуги интернета			2.4)
4. Основы сайтостроения	5	2	3 (Работа 2.5-
4. Основы саитостроения			2.7)
Проект для самостоятельного	Работа 2.8. Проектные задания на разработку		
выполнения	сайтов		
Информационное моделирование	12		
5. Компьютерное информационное	1	1	
моделирование			
6. Моделирование зависимостей	2	1	1 (Работа 3.1)
между величинами			
7. Модели статического	3	1	2 (Работа 3.2)
прогнозирования			
8. Моделирование корреляционных	3	1	2 (Работа 3.4)
зависимостей			
9. Модели оптического	3	1	2 (Работа 3.6)
планирования			
Проект для самостоятельного	Работа 3.3. Проектные задания на получение		
выполнения	регрессионных зависимостей		
Проект для самостоятельного	Работа 3.5. Проектные задания по теме		
выполнения	«Корреляционные зависимости»		
Проект для самостоятельного	Работа 3.7. Проектные задания по теме		
выполнения	«Оптимальное планирование»		
Социальная информатика	2		
10. Информационное общество	1	1	
11. Информационное право и	1	1	
безопасность			
Всего:	34 ч		

Перечень учебно-методического и программного обеспечения по информатике и ИКТ для 10-11 классов

- 1) Информатика. Базовый уровень: учебник для 10 класса/ И. Г. Семакин, Е. К. Хеннер, Т. Ю. Шеина. 6-е изд. М.: БИНОМ. Лаборатория знаний, 2016. 264с.: ил
- 2) Информатика. Базовый уровень: учебник для 11 класса/ И. Г. Семакин, Е. К. Хеннер, Т. Ю. Шеина. 5-е изд. М.: БИНОМ. Лаборатория знаний, 2015. 224c.: ил.
- 3) Информатика и ИКТ. Задачник-практикум: в 2 т. Т. 1 / Л. А. Залогова; под ред. И. Г. Семакина, Е. К. Хеннера. 4-е изд. М.: БИНОМ. Лаборатория зананий, 2012. 309.: ил.
- 4) Информатика и ИКТ. Задачник-практикум: в 2 т. Т. 2 / Л. А. Залогова; под ред. И. Г. Семакина, Е. К. Хеннера. 4-е изд. М.: БИНОМ. Лаборатория зананий, 2012. 294 : ил
- 5) Программа курса «Информатика» для 10 11 классов общеобразовательных учреждений (базовый уровень) Авторы: Семакин И.Г., Хеннер Е.К., Шеина Т.Ю.
- 6) методическое пособие для учителя;
- 7) электронные приложения для 10 класса http://metodist.lbz.ru/authors/informatika/3/eor10.php
- 8) электронные приложения для 11 класса http://metodist.lbz.ru/authors/informatika/3/eor11.php